Outra forma de calcular potências
Pitágoras descobriu que existe outra forma de calcular potências: através da soma de números ímpares. Ele descobriu que n2 é igual a soma dos n primeiros números naturais ímpares. Exemplo:
52 = 1+3+5+7+9 = 25
Você sabe o que é um número capicua?
Um número é capicua quando lido da esquerda para a direita ou da direita para a esquerda representa sempre o mesmo valor, como por exemplo 77, 434, 6446, 82328. Para obter um número capicua a partir de outro, inverte-se a ordem dos algarismos e soma-se com o número dado, um número de vezes até que se encontre um número capicua, como por exemplo:
Partindo do número 84: 84+48=132;132+231=363, que é um número capicua.
Quadrados de números inteiros
O quadrado de um numero é um dos inteiros da série 1, 4, 9, 16, 25, etc. Não se torna difícil verificar a relação entre os membros consecutivos desta série. Verificamos que se somarmos o quadrado de x , mais duas vezes x mais 1 , o próximo quadrado sucessivo é obtido.
Por exemplo , 52 + 2.5 + 1 = 25+10+ 1 = 36 = 62
Se soubermos o valor de um determinado número ao quadrado, o próximo numero é facilmente obtido.
Exemplo: Sabendo que o quadrado de 18 é 324 , temos:
192 = 182 + 2.18 + 1 = 324+36+ 1 = 361
A razão para tal fato verifica-se pela relação algébrica:
(a + b)2 = a2 + 2ab + b2
19 = (18 + 1) = 182 + 2.18.1 + 12 = 361
tirado de http://naldeci.zip.net/
Nenhum comentário:
Postar um comentário